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THE ROBUSTNESS OF NEURAL NETWORKS IN PATTERN 
RECOGNITION TASKS USING NEW TARGETS VECTORS

José Ricardo Gonçalves Manzan1; Keiji Yamanaka2; Tiago Elias Carvalho Oliveira3;
Igor Santos Peretta4; Shigueo Nomura5; Ana Paula Arantes Lima Manzan6

ABSTRACT: This paper proposes the use of new target vectors for multilayer perceptron (MLP) artificial neural networks (ANNs) in 
order to provide greater robustness in face of training parameter changes. These are targets with an amplified euclidean distance 
called orthogonal bipolar vectors (OBVs). Because of the geometric characteristics of bipolarity and perpendicularity, these targets 
are located in the n-dimensional space, which is the greatest possible distance from one another. This greater mutual distance 
of the output space points facilitates the pattern classification task of ANNs. This ensures the better performance of MLPs even 
in situations in which the parameters are not good for ANNs trained with conventional targets. Thus, the robustness obtained 
through the use of OBVs facilitates the use of MLPs for people who do not have much experience in choosing training parameters. 
The robustness analysis was performed using experiments for the recognition, with MLPs, of three kinds of data sets, using both 
OBVs and conventional targets. Real data sets used in the experiments are available at: (a) the Semeion Handwritten Digits from 
the Machine Learning Repository; (b) the Iris Image Database from the Chinese Academy of Sciences - CASIA; and (c) Australian 
Sign Language, signs of the Machine Learning Repository. The experimental results show that the use of OBVs as targets of MLPs 
reduces the loss of performance caused by the change of parameters. The average performance obtained with the use of OBVs is 
at least 15% higher than that obtained with conventional targets.
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A ROBUSTEZ DE REDES NEURAIS EM TAREFAS DE 
RECONHECIMENTO DE PADRÕES USANDO NOVOS 

VETORES ALVO

RESUMO: Este trabalho propõe o uso de novos vetores alvo em redes neurais artificiais (ANNs) do tipo multilayer perceptron 
(MLP) a fim de proporcionar maior robustez diante das mudanças dos parâmetros de treinamento. Estes são alvos com 
distância euclidiana aumentada denominados como vetores bipolares ortogonais (OBVs). Pela característica geométrica de 
bipolaridade e perpendicularidade, estes alvos são localizados no espaço n-dimensional, estando a maior distância possível 
um do outro. Esta maior distância mútua dos pontos do espaço de saída facilita a tarefa das ANNs na classificação de padrões. 
Isto garante maior desempenho para MLP até mesmo em situações em que os parâmetros não são bons para ANNs treinadas 
com alvos convencionais. Assim, a robustez obtida por meio do uso de OBVs facilita o use de MLPs por pessoas que não tem 
experiência na escolha dos parâmetros de treinamento. A Análise de robustez foi realizada com a utilização de experimentos 
de reconhecimento, por MLPs, de três tipos de conjuntos de dados: (a) Dígitos manuscritos do Machine Learning Repository; 
(b) De imagens de Iris humana da Chinese Academy of Sciences – CASIA; e (c) Signos de linguagem australiana, sinais do 
Machine Learning Repository. Os resultados experimentais mostram que o uso de OBVs como  alvos de MLPs reduz a perda 
de desempenho causada pela escolha de parâmetros. A média de desempenho obtida com o uso de OBVs é de até 15% maior 
que aquela obtida com vetores convencionais. 

Palavras-chave: Multilayer Perceptron. Vetores Bipolares Ortogonais. Distância Euclidiana.
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INTRODUCTION

The field of pattern recognition has gained 
increasing prominence in various areas of research 
and application. Among the various types of tools 
used in pattern recognition tasks, we can highlight 
artificial neural networks (ANNs). Among the existing 
ANNs, MLPs are widely used in Pattern Recognition 
problems. However, some studies indicate that MLPs 
have at least two drawbacks. Some problems, such as 
image recognition with medium and high resolution, 
or signal classification with a large amount of charac-
teristics data with a large number of classes, require a 
large computational effort of MLPs (LEE et al., 2012). 
The other drawback concerns the definition of param-
eters, such as the learning rate, the size of the hidden 
layer and the initial synaptic weights (LAWRENCE et 
al., 1998). These parameters are important for a good 
or bad performance of MLP networks. Many studies 
point to methodologies for the definition of parame-
ters (ISA et al., 2011; SIVARAM et al., 2012; SAMAL et 
al., 2015), but there is no exact method that leads to a 
good choice of parameters. 

Several studies have been conducted to obtain 
performance gains in MLPs (HUANG et al., 2015) and to 
overcome the drawbacks mentioned above. There are 
studies dedicated to determining the topology of MLPs 
(SAMAL et al., 2015) and they are based on the detec-
tion of signal sensitivity to prevent noise interference 
concerning the performance of MLPs (LEE et al., 2006). 
In addition to these studies, any new proposal should 
highlight the addition of the sparsity regularization term 
for the cross-entropy cost and the update of the network 
parameters to minimize the joint cost (SIVARAM et al., 
2012), as well as the implementation of hybrid systems, 
such as the use of RBF functions (ISA et al., 2011).

A detailed study of the strategies used for 
handwritten digit recognition competitions based on 
MLPs revealed that performance gains were obtained 
through an increase of hidden layers, an increase 
in the number of neurons in the hidden layers, an 
increase of deformed training samples to avoid the 
problem of “overfitting” and the use of a graphics pro-
cessing unit to increase the computational processing 
speed (CIRESAN et al., 2012).

Only a limited number of studies have been 
conducted concerning the influence of the output 
space on the performance of MLP networks. The par-
ticular research papers found by the authors in this 
regard are quite old. One of these studies deals with 
the use of different activation functions in the output 
layer (RUCK et al., 1990). In this study, the behavior 
of linear and nonlinear functions is evaluated for the 
delimitation of borders. In another study, the gradient 
is used to obtain a threshold of the linear discriminant 
function of the output layer (HWANG et al., 1991). Each 
input pattern is a linear discriminant. Current studies 
focus their attention on the processing of input data, 
the training algorithm, the optimization of training 
parameters, and on the topology and hybridization 
incorporated with other systems. 

This work proposes the use of new target 
vectors in MLPs for pattern recognition tasks. 
These targets have a geometric property of being 
mutually orthogonal. By being mutually orthogonal, 
the Euclidean distance reaches its maximum value. 
As a result, there is a reduction in the intersection 
between the convergence regions formed around 
each target.

With respect to the output space, preliminary 
studies undertaken by the authors have shown per-
formance gains by increasing the distance between 
the target points. The increase of the Euclidean 
distance is obtained by using Orthogonal Bipolar 
Vectors (OBVs) (MANZAN et al., 2016). These studies 
show the improvement in the classification of com-
plex problems with highly degraded patterns and 
with a high degree of noise. Since they are orthogo-
nal and bipolar, the vectors have the largest possible 
Euclidean distance between each other.In order to 
show the benefits of using the OBVs proposed in this 
paper, the performance of the MLP was analyzed 
focusing on the variation of the learning rate param-
eter and the number of neurons in the hidden layer. 
This work seeks to evaluate the robustness of MLP 
networks trained with different targets when train-
ing parameters are changed. Through this paper, 
the authors show that the use of OBVs reduces the 
interference of the choice of training parameters on 
pattern recognition tasks. The data used in the ex-
periment were: (a) the Semeion Handwritten Digits 
from the Machine Learning Repository, an interna-
tional repository (LICHMAN, 2013); (b) the Iris Image 
Database from the Chinese Academy of Sciences – 
(CASIA, 2010); and (c) Australian Sign Language, signs 
of  the Machine Learning Repository, international 
repository (KADOUS, 2002).

Section 2 presents the mathematical founda-
tions involved. In section 3, the experimental pro-
cedure is described. The experimental results and 
discussion are presented in section 4. Finally, the 
conclusion is presented in section 5.

MATHEMATICAL FOUNDATIONS

Inner product, norm, angle, 
perpendicularity and euclidean distance

From a geometrical point of view, targets are 
vectors of n-dimensional space, so in this subsection 
some mathematical concepts related to the use of 
new targets will be presented. These concepts are the 
inner product, norm, angle, perpendicularity and the 
Euclidean distance between targets.

Let’s assume that    and    are two targets of finite 
dimensional spaces defined by Equation (1) and 
Equation (2). Equation (3) represents the inner product 
between    and    ; the Euclidean distance is calculated 
using Equation (4); the norm of a vector is calculated 
by Equation (5); and Equation (6) shows the formula for 
calculating the anglebetween two vectors.
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(9)

(10)

(11)

(8)

Two vectors are mutually orthogonal when 
their inner product is equal to zero.

Definition of target vectors

Conventionally, MLP networks use two types of 
targets in pattern recognition problems (HAYKIN, 2009). 
The proposal of this work it is to compare conventional 
targets with targets that have the characteristic of having 
an amplified Euclidean distance. One characteristic of 
these targets with amplified Euclidean distance is that 
they have a size that is always equivalent to a power of 2 
(FAUSETT, 1994). This means that in some applications, 
the OBVs have a greater dimensions than conventional 
targets. For the sake of comparison, this work also used 
targets with the same characteristics as conventional 
targets, but with the size of OBVs. To make this infor-
mation clearer, the definitions of the types of targets 
are presented below. 

• Binary Vectors (BVs): BVs are targets consisting of n 
components. The value n corresponds to the num-
ber of patterns to be classified by the ANN (HAYKIN, 
2009). Each row i of this matrix corresponds to the 
i-th BV containing the component “1” for i = j and 
the component “0” for all other elements. Equation 
(7) defines a matrix with n (BVs) of size n;

• Conventional Bipolar Vectors (CBVs): In a similar 
way to what happens with BVs, CBVs are also com-
posed of n components and their size depends on 
the number of patterns to be classified by the ANN 
(HAYKIN, 2009). Equation (8) defines a matrix with 
n (CBV)s of size n;

• Orthogonal Bipolar Vectors (OBVs): These targets 
are mutually perpendicular. The algorithm that al-
lows OBVs to be obtained is presented in Fausset, 
1994. A feature of these targets is that half of the 
elements are equal to “1” and the other half is 

equal to  “–1”. For mathematical reasons, the size 
of the OBV is always a power of “2”;

• Non-Orthogonal Bipolar Vectors (NOV): These targets 
are an extension of CBVs. They have the same char-
acteristics of the CBV-type targets and the same size 
as OBVs. They were used in this work only in order to 
provide a fair comparison between targets with the 
same characteristics as CBVs but having the same 
size as OBVs. To obtain NOVs, CBVs are therefore 
complemented with the term “–1” in order to achieve 
the same size as the OBVs.

Observations about the target

According to their definition, the elements of the 
CBVs are equal to –1 except for one element whose 
value is 1. In addition, the difference between these 
targets is given by the position occupied by element 1. 
Consequently, according to the inner product definition 
given by Equation (3), the result of the inner product 
can be determined between two CBV networks of sizes 
greater than 4, as a function of the number of compo-
nents. For the indexes where the component of the 
vectors is equal to 1, the products of the components 
are equal to –1, and for other indexes, the products of 
the components are equal to 1. Therefore, two compo-
nents for the products will be equal to –1 and all others 
will be equal to 1. This brings us to the value of the inner 
product between CBVs as a function of the number n of 
components, as shown in Equation (9).

Based on the norm definition given by Equation 
(5), one can also express norm of the vectors for CBVs 
as a function of the number of components, according 
to Equation (10).

Substituting the results of Equations (9)-(10) in 
Equation (6), which corresponds to the angle between 
vectors, we get Equation (11), which expresses the 
value of the arccosine of the angle between these 
vectors as a function of the number of components 
of the CBVs.

If we increase the value of n as much as possib-
le, the ratio (n – 4)/n will tend to 1. The arccosine func-
tion decreases and approaches 0 when its argument 
tends to 1. Thus, the inner product between two CBVs 
increases as their size increases, decreasing the angle 
between them. In other words, if the dimensionality 
of the output space is high enough, the difference be-
tween two CBVs will become increasingly ambiguous. 
Furthermore, when taking two CBVs of any given size, 
the Euclidean distance shown in Equation (4), is always 
equal to        .
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(12)

On the other hand, if the inner product between 
two vectors is zero, then the numerator, the ratio 
established in Equation (6), is zero. Thus, the angle 
between both vectors is 90 degrees. In this case, the 
vectors are perpendicular. Equation (12) shows the 
Euclidean distance between two OBVs for the number 
of components n.

This shows that the Euclidean distance between 
OBVs is greater than the Euclidean distance between 
CBVs if the number of components is greater than 4. 
It also shows that the Euclidean distance between the 
OBVs increases as you increase the number of com-
ponents. The greater the size of the OBV-type targets, 
the greater the Euclidean distance between them.

BV-type targets are mutually perpendicular. 
However, the Euclidean distance between each pair of 
BVs is always equal to     .

NOVs may have the same size as OBVs, but 
their inner product is not-zero. The difference of NOVs 
in relation to CBVs is only the size. The inner product 
between two NOV-type targets is also always equal to  
. If the size of the NOVs is large, then the correspond-
ing inner product between them is large. We therefore 
assume that the increase in the NOV’s size does not 
improve performance in MLPs (MANZAN et al., 2016).

Targets used in the experiments

The dimensions of the targets are directly 
linked to the types of data that were used in this 
work. This work used three types of benchmark data. 
Handwritten digits 0 to 9, human iris images and signs 
corresponding to the Australian sign language, which 
we call Auslan Signs. A detailed description of this data 
is given in section 3.1.

Ten classes need to be classified in the experi-
ments with handwritten digits. As such, CBVs of size 10 
(CBV10) are sufficients for solving the problem. As es-
tablished in subsection 2.2, OBV-type targets have a size 
equal to a power of 2. To classify 10 digits, OBVs with size 
16 (OBV16) must be used. To ensure that comparisons 
were fair, NOVs of size 16 (NOV16) were used.

The data corresponded to the irises of 71 individuals 
in the experiments using the human iris. Following the 
same reasoning used with handwritten digits, CBVs of 
size 71 (CBV71), and NOVs (NOV128) and OBVs (OBV128) 
of size 128 were used. Finally, since there are 95 Auslan 
signs, CBVs of size 95 (CBV95) and NOVs (NOV128) and 
OBVs (OBV128) of size 128 were used.

EXPERIMENTAL PROCEDURE

Database

 This work was performed with three types 
of benchmark data. The reason for the use of three 

types of data is to assure with the highest possible 
reliability that the methodology is superior to the 
traditional MLP approach, even with data of different 
nature and with different classes. By showing that the 
proposed method is more robust and reliable than 
the traditional approach, a potential MLP user in a 
pattern recognition task will not have concerns about 
defining the network topology and the initial training 
parameters. In addition, it allows the user to perform 
his experiments with a reduced topology size and, 
consequently, in a shorter time.

a. Handwritten Digits

Digits obtained from the international repository 
known as the Semeion Handwritten Digits of Machine 
Learning Repository were used in the training of the 
MLP networks (LICHMAN, 2013). These patterns were 
obtained from a group of about 80 individuals, who 
were asked to write down the digits from 0 to 9 twice. In 
the first request, people were asked to write the digits 
calmly, prioritizing perfection in writing. In the second 
request, people were asked to write the digits quickly, 
without worrying about their readability.

Each figure was scanned in an image containing 
256 pixels in the format of 16 rows and 16 columns. 
Each image was processed in a resolution scale of 256 
gray levels. The pixel matrix was subsequently trans-
formed into a line vector of 256 components, with 
each line being positioned immediately to the right of 
its top line in the matrix. Each pixel corresponding to 
the background of the image was assigned a value of 0 
and each pixel corresponding to the digit was assigned 
the value 1 according to the information described in 
the repository (LICHMAN, 2013). In this work, the pixels 
corresponding to the image background received the 
value –1 instead of 0.

b. Iris Image Database

The authors also conducted experiments with 
human irises obtained from the Chinese Academy 
of Sciences - Institute of Automation database called 
CASIA, 2010. The database contains iris images from 108 
subjects, 71 of which consisting of complete data with 
six images. For this reason, we adopted the data corre-
sponding to these 71 subjects. For each test subject four 
images were used in the training session. According to 
the CASIA repository, these images were taken by using 
infrared light to obtain the iris features with enough con-
trast for biometric pattern recognition.

The steps for iris image processing are as 
follows. The first step is the locate the iris region in 
the image, which is done using the circle Hough 
transform. Subsequently, the ring-shaped iris re-
gion is normalized in order to be represented it as a 
rectangular matrix. Finally, the extraction of the iris 
features is performed. In this paper, the iris features 
were extracted by convoluting the normalized image 
with the so-called log Gabor filter. Filtering gives rise to 



44 Revista Inova Ciência & Tecnologia, Uberaba, p. 40-48, v. 6, n. 1, jan/jun., 2020

José Ricardo Gonçalves Manzan; Keiji Yamanaka; Tiago Elias Carvalho Oliveira;

complex coefficients, whose phases are quantized to 
one of the four quadrants of the complex plane. Each 
quadrant is referenced by two bits, and a binary tem-
plate is created (NEGIN et al., 2000). For each image 
there are 8640 pixels arranged in 18 concentric circles, 
each containing 480 pixels.

In order to reduce the computational effort without 
significant loss of performance, the average for every 10 
pixels of the circumference was calculated. As such, each 
circle was assigned 48 values corresponding to all averages. 
Thus, 240 values were allocated to each pattern.

c. Australian Sign Language Signs

In addition to the data presented above, exper-
iments were performed with Auslan signs (Australian 
Sign Language). The authors captured 27 samples for 
each of the 95 Auslan signs using high-quality position 
trackers from native individuals (KADOUS, 2002).

Each sample is represented by 60 rows with 22 
values. The 22 values correspond to 22 data capture 
channels (KADOUS, 2002). Only the first four rows were 
used of each sample from the analysis of preliminary ex-
periments in order to reduce the computational effort.

Experimental and statistical design

To achieve the objectives of this work, training and 
testing experiments were conducted in MLPs for the rec-
ognition of handwritten digits, human irises and Auslan 
signs. For each type of data, experiments were performed 
with 7 different values for the initial learning rate and 12 
different values for the number of neurons in the hidden 
layer. All combinations of initial learning rates and num-
ber of neurons of the hidden layer were subjected to the 
use of three types of characteristic targets for each data 
set: CBV10, NOV16 and OBV16 for handwritten digits, 
CBV71, NOV128 and OBV128 for human irises and CBV95, 
NOV128 and OBV128 for Auslan signs.

The experiments were repeated 100 times for 
each combination, with random initialization of weights. 
The initial synaptic weights were random values between 
–0.5 and 0.5. The initial learning rate values adopted for 
handwritten digits were: 0.001, 0.005, 0.01, 0.05, 0.1, 
0.25 and 0.4. The initial learning rate values adopted for 
human irises and Auslan signs were: 0.0001, 0.00025, 
0.0005, 0.00075, 0.001, 0.0025 and 0.005. The values for 
the number of neurons in the hidden layer were: 25, 50, 
100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000. As 
such, each type of target was subjected to 84 combina-
tions of initial learning rate and number of neurons in 
the hidden layer for each data type. Since 100 exper-
iments were performed for each combination, each 
type of target was subjected to 8400 experiments. Thus 
25200 experiments were therefore performed for each 
of the three targets types: CBV, NOV and OBV. Finally, 
75600 experiments were conducted accounting for the 
three types of data used.

Each training session lasted 50 epochs. For each 
epoch, a distinct set of tests in relation to the training 
set was submitted to the network, and the hit rate 

(accuracy) was collected. Each experiment brought in 
50 sets of performance results corresponding to each 
epoch, therefore. The mean and variation coefficient 
for the 25200 experiments performed for each type 
of target were calculated. Box-plot graphics were also 
generated for epochs 1, 10, 20, 30, 40 and 50. Those pa-
rameter combinations (out of a total 84 combinations) 
with a performance rate of over 70% in epochs 1, 10, 
20, 30, 40 and 50 were written down.

A total of 90 samples of each digit were used for 
the MLP network training step, reaching a total of 900 
samples for the 10 basic handwritten digits.  Two samples 
of each individual were used for the training step with 
the human iris. As such, 142 iris samples were used. Nine 
samples of each sign were used for Auslan the signs, that 
is, a total 855 samples. The test sets for handwritten digits, 
human irises and Auslan signs were composed of 450, 
213 and 855 samples, respectively.

The experiments were performed with computers 
using exactly the same operating system settings. The 
authors created the simulation program using the 
Matlab® 2013 software. The algorithm used the adaptive 
learning rate and momentum term.

EXPERIMENTAL RESULTS AND 
DISCUSSION

Figures (1)-(3) show the mean of performance 
(accuracy) from all parameter combinations for each of 
the 50 training epochs. In Figure (1), the results for the 
experiments with handwritten digits are given. The re-
sults for the experiments with human irises and Auslan 
signs are shown in Figures (2) and (3), respectively.

The mean of performance obtained with the use 
of OBVs is higher in all 50 epochs of the various simu-
lations combining different parameters. However, this 
difference is much clearer in the early training epochs. 
This shows that the use of OBVs provides good perfor-
mance with little computational effort as opposed to 
conventional targets that require more training.

Another interesting phenomenon is that the 
average performance obtained with OBVs grows with 
increasing epochs without oscillations. With conven-
tional targets, one can see that oscillations occur in the 
experiments with handwritten digits with the increase 
of epochs. This shows that the convetional targets 
make the network more susceptible to the overfitting 
effect than when OBVs are used.

Figure 1: Mean of performance mean for all epochs – 
handwritten digits.

José Ricardo Gonçalves Manzan et al.
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Figure 2: Mean of performance for all epochs – human irises. 

Figures (4), (5) and (6) show the coefficients of va-
riation in performances obtained from experiments with 
handwritten digits, human iris and Auslan signs, respecti-
vely. A significantly lower variability is observed in the expe-
riments in which OBVs are used. This shows how much the 
use of OBVs improve the robustness of MLP network per-
formance. In other words, networks trained with the use 
of OBVs suffer less interference from parameter changes. 
One can also see that the difference between variabilities 
in the experiments with CBVs and NOVs is very small. This 
shows that increasing the size of CBVs does not improve 
the performance of the MLP. At times, there is even an 
increase in variability when NOVs are used.

Figure 3: Mean of performance for all epochs – Auslan signs.

Figure 4: Coefficients of variation for the performances obtained 
in training – handwritten digits.

Figure 5: Coefficients of variation for the performances obtained 
in training – human irises.

Figure 6: Coefficients of variation for the performances ob-
tained in training – Auslan signs.

Figures (7), (8), (9), (10), (11) and (12) show the 
box-plot graphs relating to the epochs 1, 10, 20, 30, 
40 and 50, respectively. The box-plot graphs refer to 
the performances obtained with all the parameter 
combinations. 

The box-plot graph of figure 7 shows that 
experiments using OBVs comprise a superior 
range of performance than experiments with con-
ventional targets. In the experiments with human 
irises and Auslan signs, the variability presented 
by OBVs is much higher. However, this variability 
comprises a superior range in performance. The 
variability with conventional targets is small, but 
shows a concentration of less than 10%. In expe-
riments with handwritten digits, the variability is 
lower with OBVs and higher with CBVs and NOVs. 
This difference is explained by the fact that the 
handwritten digits have only 10 classes, whereas 
the human irises have 70 classes and Auslan signs 
have 95 classes.

Figure 7: Performance for epoch 1.
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Figure 8: Performance for epoch 10.

Figures (9) - (12) show that the variability of the performances obtained in the experiments with OBVs reduces 
more and more with the increase of the epochs. 

Figure 9: Performance for epoch 20.

In addition, the distribution of performances is concentrated in the upper range of the box-plot chart. On the other 
hand, the variability of the performances obtained in the experiments with conventional targets increases as the number 
of epochs increases. These results reveal how OBVs are robust to the effects of variations in training parameters.

Figure 10: Performance for epoch 30.

Figure 11: Performance for epoch 40.

José Ricardo Gonçalves Manzan et al.
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Figure 12: Performance for epoch 50.

Table 1 shows the number of experiments with results higher than 70% for each type of target. The results 
refer to all 84 experiments formed by the combination of the parameters for handwritten digits, human irises and 
Auslan signs.

Table 1 - Number of experiments with superior results to 70%

Target
Vectors

Handwritten digits Human irises Auslan signs

CBV

10

NOV

16

OBV

16

CBV

71

NOV

128

OBV

128

CBV

95

NOV

128

OBV

128

Ep
oc

hs

1 22 21 74 0 0 40 0 0 0

10 52 43 84 0 0 74 0 0 32

20 55 47 84 15 9 76 14 11 52

30 55 49 84 27 22 77 39 37 61

40 57 49 84 38 34 77 49 48 64

50 57 47 84 49 44 76 60 59 68

These results show how networks trained 
with OBVs are generally capable of obtaining high 
performances regardless of the datasets used and 
the parameters used in the training. A user with 
little experience in MLP networks, therefore, would 
not have much difficulty in modeling and training 
the network with good performance rates if they 
adopted OBV-type targets.

CONCLUSION

This paper proposes the use of OBVs as targets 
in MLP-type networks; they provide superior perfor-
mance when compared to more conventionally used 
targets, such as CBVs and NOVs. It also proposes that 
the performance of the MLP receiving less influence 
from the choice of parameters of the initial learning 
rate and number of neurons of the hidden layer when 
OBVs are used. In other words, it proposes that the 
use of OBVs makes MLP networks more robust in 
face of variations in both training parameters and the 
types of data to be classified.

The experimental results showed that the 
mean performance obtained with the use of OBVs 
is higher than the mean performance obtained with 
the use of conventional targets. This phenomenon 
occurs independently of the type of data to be clas-
sified and the training parameters. The use of OBVs 
in pattern recognition problems therefore guaran-
tees a better performance compared to the use of 
conventional targets.

The results also showed that changes in 
training parameters interfere much less in the per-
formance of MLPs when OBVs are used. The perfor-
mance variation coefficients are much lower when 
this type of target is used. The box-plot graphs also 
make clear that the dispersion of performances of 
trained OBV networks is very small after 10 epochs 
and concentrates on the upper parts, above 80%. 
This means that when using MLPs in pattern rec-
ognition tasks, users with little knowledge of MLP 
network modeling will have little concern about 
finding the training parameters that will provide 
the best performance. It also indicates that it is not 
necessary to use very large topologies, reducing the 
computational effort required in the training step. 
Another aspect that may contribute to the reduction 
of computational effort is the fact that the use of 
OBVs accelerates the convergence of training. With 
few training epochs, the MLP achieves high perfor-
mances if the number of classes of the problem is 
small, as shown by the results obtained with hand-
written digits.

This way, MLP networks become more robust 
when OBVs are used as targets. Such an approach is 
simple to implement since it does not require changes 
in the training algorithm, in the generation of synaptic 
weights and in the determination of the network 
topology. The only topological change is in the output 
layer, since depending on the number of problem 
classes to be solved, OBVs will have to be used that 
are larger than conventional targets.
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